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We consider tunneling of vortices across a superconducting film that is both narrow and short �and con-
nected to bulk superconducting leads at the ends�. We find that in the superconducting state the resistance, at
low values of the temperature �T� and current, does not follow the power-law dependence on T characteristic
of longer samples but is exponential in 1 /T. The coefficient of 1 /T in the exponent depends on the length or,
equivalently, the total normal-state resistance of the sample. These conclusions persist in the one-dimensional
limit, which is similar to the problem of quantum phase slips in an ultranarrow short wire.
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I. INTRODUCTION

Vortex tunneling across narrow thin films is a quantum
effect that limits superconductivity in these systems. It does
not rely on any vortices preexisting in the sample �due, e.g.,
to temperature or a magnetic field� but occurs as a result of
quantum fluctuations—either a vortex entering the sample
from the outside or a virtual vortex-antivortex pair created in
the sample. A supercurrent �if present� exerts a force on the
vortex and, for certain types of vortex motion, the total work
done by this force is nonzero. That means that an amount of
energy is taken away from the supercurrent, i.e., there is
dissipation—an electrical resistance.

Frequently, one considers vortex tunneling at a strong
enough current, so that the vortex can nucleate close to the
boundary: the closer it nucleates, the shorter is the distance it
has to tunnel, and the larger is the tunneling rate.1,2 However,
for very narrow samples �starting perhaps with a few tens of
nanometers�, the rate may remain substantial even at weak
currents, when the vortex tunnels the entire width. This is the
case we consider here, motivated in part by its similarity to
quantum phase slips in a genuinely one-dimensional �1D�
wire, a topic of much current experimental research.3–13

While the core of a vortex can for our purposes be con-
sidered pointlike, it is important to take into account the
long-range disturbance that vortex motion produces. Low-
dimensional superconductors support a gapless plasmon
mode,14,15 which in the presence of a nearby ground plate
�the case considered here� has an acoustic dispersion law,
with a speed c0. This leads to a length scale, lp=�c0 /T �T is
the temperature�, to which other length scales can be com-
pared. In particular, one can distinguish between long wires,
those of length L� lp, for which the final state of plasmons
does not depend on the boundary conditions at the ends, and
short ones, L� lp, for which it may.

For long 1D wires, plasmon production has been shown
theoretically to significantly affect the tunneling rate.16–18 In
the presence of disorder, it leads to a power-law current-
voltage dependence in the superconducting state at low
temperatures,18 V�I�� I� �a state is superconducting if ��1�.
Here, we consider the opposite, short-wire limit. �We will
often use the system of units with �=c0=1, in which the
short-wire condition is simply LT�1.� This choice is moti-
vated by a puzzle in the existing experimental results: while

in a long wire the observed nonlinear V�I� curve is indeed
well described by a power law,11 in short wires, no power
law in current or in temperature has been detected.10 Our
results provide an explanation for that.

A general theory that allows one to compute the effect of
plasmons on vortex tunneling for samples of various sizes
can be constructed along the following lines. As well known
�and reviewed, for example, in Ref. 19�, two-dimensional
superfluids have a dual description, in which vortices are
viewed as charges and plasmons as “photons,” so that the
theory maps onto planar quantum electrodynamics �QED�.
We present a derivation of this, based on a path-integral
identity, in Sec. II.

The version of QED that we use in this paper is
“quenched,” in the sense that it considers only a single vor-
tex and neglects interaction with additional vortices that may
tunnel nearby. We expect this to be a good approximation as
long as one stays away from a superconductor-insulator tran-
sition. �For 1D wires, a mean-field-type theory that takes into
account interactions between quantum phase slips has been
recently proposed in Ref. 20.� In the quenched limit, the
computation of the plasmon action amounts essentially to a
Euclidean �imaginary time� version of the classical radiation
theory. �The imaginary time appears since we are consider-
ing a tunneling process.� An important aspect of the theory is
formulation of the boundary conditions at the ends of the
sample. This is described in Sec. III, and the solution for the
plasmon field is given in Sec. IV.

Our final result is that, in the superconducting state of
narrow short wires connected to bulk superconducting leads,
the resistance due to vortex tunneling, at small temperatures
and currents, is no longer a power law but an exponential in
1 /T. We trace this stronger suppression to a large gradient
energy that the system must have already when it enters the
classically forbidden region. The coefficient of 1 /T in the
exponent depends inversely on the length L.

We wish to reiterate that this result applies only in the
superconducting state, where the tunneling events �instan-
tons� are rare, and does not preclude the possibility of a
transition to an insulating state at larger tunneling rates.

The tunneling process we consider here is in addition to
and competes with the classical, overbarrier process. The lat-
ter is an analog of a thermally activated phase slip in the 1D
case.21–23 As we will see, despite the above-mentioned sup-
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pression, the rate of vortex tunneling is exponentially larger
than the rate of thermal activation over a broad range of
parameters. We hope that the difference in both the magni-
tudes of the resistance and its dependence on the length will
allow one to distinguish between the two effects experimen-
tally.

We should also note the difference in the starting points
for the theories of these two effects. The energy of the
LAMH saddle point22,23 is due to the phase slip core �and
consequently depends strongly on the Ginzburg-Landau co-
herence length ��. In contrast, in our case, the activation
energy is that of the initial tunneling state, which lies far
from the top of the potential barrier. Depletion of the order
parameter in this state is still small, and we can use the
phase-only theory, in which vortex cores are essentially
pointlike.

II. DUALITY MAP

The Lagrangian density of the phase-only theory that de-
scribes a superconducting film in the presence of a nearby
ground plate is

L =
1

2g
��t	�2 −

1

2
Ks��	�2 =

1

2
Ks�


	�
	 . �1�

In the second equality here we have switched to the notation
of special relativity, by using instead of time t the coordinate
x0=c0t, where c0=�gKs is the plasmon speed. �In addition,
x1�x and x2�y.� In what follows, we choose units of length
and time so that c0=1. Greek indices take values 0, 1, and 2,
and summation over a repeated index is implied.

The field 	 is the phase of the order parameter, but no
assumption is made about the existence of long-range order,
i.e., we do no require the expectation value of exp�i	� to be
nonzero. All that is required for superfluidity is that the stiff-
ness Ks renormalizes to a nonzero value in the infrared.

If 	 were a single-valued smooth function of �x ,y�, plas-
mons would be the only excitations in the system, and the
theory would be completely Gaussian. To describe vortices,
we allow 	 to be multivalued. Alternatively, we could make
it discontinuous by drawing explicit branch cuts at vortex
positions, but we will be using the first approach. Then, �	 is
smooth outside vortex cores.

The phase-only description �1� does not resolve vortex
cores, so a short-scale cutoff of order of the Ginzburg-
Landau coherence length � is implied.

Let us remark on the issue of gauge invariance and the
apparent absence of electromagnetic fields from Eq. �1�. In
thin films, magnetic field of a vortex extends over a large
area, determined by the transverse screening length ��.24 If
�� �which in thin films can exceed 100 
m� is much larger
than the smallest dimension of the film, the magnetic field
can be neglected, and it is possible to choose a gauge such
that the vector potential A is close to zero. The remaining
gauge freedom can be used to make the scalar potential A0
go to zero away from the film. This fixes the gauge com-
pletely, and if 	 denotes the phase in this gauge it is in effect
gauge invariant. Integrating out A0 produces a capacitive

term, which eventually becomes the first term in Eq. �1�.
We have not included in Eq. �1� a “topological” term,

proportional to �t	, that gives rise to the Magnus force on a
vortex. We consider films that have significant amounts of
disorder, and in disordered superconductors the Magnus
force is small.25

Equation �1� allows one to describe dissipation of energy
of vortex motion into plasmons, but does not include any
dissipative mechanisms related to normal electrons at the
vortex cores. This is justified in the limit of strong disorder,
since transfer of energy to the normal component in this case
is inhibited by the short electron mean-free path.

Because in the presence of vortices 	 is multivalued, the
expression

J
 =
1

2�


������	 , �2�

where 

�� is the unit antisymmetric tensor, is nonzero, and
indeed is the vortex current �J0 is the vortex density�. Setting

q� � ��	 , �3�

we can write the current �2� as

J
 =
1

2�


����q�. �4�

The equation of motion following from Eq. �1� is

����	 = ��q� = 0. �5�

�In the presence of a topological term, the temporal compo-
nent of Eq. �3� is replaced by q0=�0	+const, and Eq. �11�
below is modified accordingly. The expression �4� for the
current and the equation of motion �5� are both unaffected.�

In what follows we restrict our attention to configurations
satisfying the equation of motion �5�. In the real-time version
of the theory, they describe motion of an arbitrary number of
real vortices in the presence of supercurrents and plasmon
waves. In the Euclidean �imaginary time� version, to which
we turn shortly, solutions to the equations of motion will
determine the most probable tunneling paths �instantons� re-
sponsible for the quantum decay of supercurrents.

The real-time action corresponding to the Lagrangian
density �1� is

S =
1

2
Ks� �
	�
	d3x =

1

2
Ks� q
q
d3x , �6�

where d3x=dx0dx1dx2. If q
 is a solution of the equation of
motion �5�, there is a path-integral identity—the duality map

eiS =� Df
�D� exp � iKs�−
1

4
f
�f
� −

1

2


��f
�q�

+
1

2
�

����f
�	d3x , �7�

where f
� is antisymmetric in 
, � and is subject to the
boundary condition
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��f
�n�
b = − 2n�q�; �8�

n� is the normal to the boundary �b� of the space-time vol-
ume.

Because the path integral in Eq. �7� is Gaussian, the map
can be verified directly. First, note that the path integral over
� enforces the Bianchi identity



����f
� = 0. �9�

Since in Eq. �7� f
� is an independent variable and not �yet�
a curl of some gauge field, Eq. �9� is not really an identity
but an independent equation of motion; however, we keep
the familiar term.

Next, integrating over f
� amounts to solving the saddle-
point equation

f
� + 

���q� + ���� = 0. �10�

Taking curl of this and using Eqs. �9� and �5�, we obtain
�����=0. On the other hand, applying the boundary condi-
tion �8� in Eq. �10� tells us that the normal derivative of � at
the boundary is zero. For a space-time volume of a simple
shape, these conditions are sufficient to reduce � to a con-
stant, which then drops out of Eq. �10�. Equation �10� be-
comes

f
� = − 

��q� = − 

����	 . �11�

Substituting this back in Eq. �7� we confirm that the original
action �6� is recovered. In terms of the saddle-point value
�11�, this action can be written as

S =
1

4
Ks� f
�f
�d3x . �12�

Now, let us take an alternative �“dual”� view and solve the
identity �9� explicitly by introducing a gauge field a
 �quite
distinct from the electromagnetic potential A
� as follows:

f
� = �
a� − ��a
. �13�

Differentiating Eq. �11�, we obtain the following Maxwell
equations for this field:

��f
� = − 2�J
, �14�

where J
 is the vortex current �4�. The usefulness of this dual
view is that it allows one to determine f
�, and the corre-
sponding action, for any prescribed motion of vortices. Us-
ing Eq. �11�, one can then find the derivatives of the phase 	.

The dual theory also allows one to take into account the
backreaction of produced photons on the vortex motion, by
extremizing the total action with respect to that motion itself.
In the problem to which we apply this theory here, backre-
action will determine the region where the vortex prefers to
tunnel. �This region turns out to be the middle of the
wire—in contrast to the resistively shunted 1D case, where
quantum phase slips occur preferentially near the ends.26�

To any solution of Eq. �14� we can add a homogeneous
solution—a static uniform “electric” field f0i=const. Accord-
ing to Eq. �11�, such a field corresponds to a static uniform
supercurrent. We adopt the convention in which the super-
current density is measured in units of −2 
e
 �e is the elec-

tron charge�, i.e., is given by Ks�	. Then, for example,
a current in the positive x direction corresponds to an
“electric” field in the negative y direction, and if a vortex
moves that way, far from any boundaries, the work done on
it by the current will be positive. In the presence of bound-
aries, a nontrivial change of 	 at a boundary may give an
additional contribution to the total work.

III. RADIATION THEORY

To describe tunneling, we switch to the Euclidean time,
via

� = it ,

a4 = − ia0,

J4 = iJ0.

The relations �11� take the form

− i�4	 = fxy � B , �15�

i�y	 = fx4 � E , �16�

− i�x	 = fy4 � F , �17�

where we have introduced shorthands B, E, and F, which
will be much used in what follows.

The Euclidean counterpart of the action �12� is

SE = −
1

2
Ks� dxdyd��B2 + E2 + F2� . �18�

Note that, as a result of the transition to the Euclidean time,
the relations of all three components of f
� to the derivatives
of 	 have acquired factors of i. As a consequence, on the
instanton solution, B, E, and F will all be purely imaginary,
and the action �18� will be positive. This is in agreement with
the a priori expectation that coupling to plasmons should
suppress vortex tunneling �the suppression factor is e−SE�
since, as it tunnels, the vortex has to drag the plasmon sub-
system with it.

Maxwell equations �14� in these notations have the form

− �4E − �yB = 2�Jx, �19�

− �4F + �xB = 2�Jy , �20�

�xE + �yF = 2�J4, �21�

while the Bianchi identity reads

�xF = − �4B + �yE .

Using these together, one can obtain independent wave equa-
tions for B, E, and F. All that is left to choose, then, is a
suitable form of the vortex current and the boundary condi-
tions for the fields.

We consider the theory on a rectangular strip of length L
�0�x�L� and width w �0�y�w� and assume that the vor-
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tex motion is purely transverse: Jx=0. Then, the wave equa-
tions are

�4
2B + �2B = 2��xJ

y , �22�

�4
2E + �2E = 2��xJ

4. �23�

Once solutions to these are obtained, the solution for F can
be found from Eq. �20� or Eq. �21�, except for the static
uniform component. The latter is the static uniform “electric”
field mentioned at the end of Sec. II. It corresponds to a
steady supercurrent in the x direction, and that supercurrent
can in principle have any value. Eventually, this component
of F will be determined by the properties of the metastable
state from which the system tunnels.

The remaining �nonzero� components of the vortex cur-
rent are

Jy = i��Y��x − X��„y − Y���… , �24�

J4 = i��x − X��„y − Y���… , �25�

where Y��� is the transverse position of the vortex. At a finite
temperature T, Y��� must be periodic in � with period �
=1 /T.

If the vortex could nucleate inside the strip, Y��� would
start at the upper edge, Y =w, move down to Y =Ynucl, the
nucleation point, and then back to Y =w. This would form a
“bounce.”27 As we already noted, though, here we consider
only supercurrents that are small enough for the vortex to
have to tunnel the entire width w. Then, the relevant configu-
ration is an instanton–anti-instanton �IA� pair: a vortex tun-
neling across the strip around time �=�0, plus an antivortex
�or a vortex moving in the opposite direction� tunneling
around �=�0�. A representative history of Y��� is, shown in
Fig. 1.

Turning to the boundary conditions �b.c.’s�, we note that,
since there is no current through the edges of the strip, B and
E satisfy, respectively, the Neumann and Dirichlet boundary
conditions at y=0 and w. We can then define Fourier trans-
forms with respect to y and � as follows:

B�x,y ;�� = T�
ln

e−i�n��l�y�Bln�x� ,

E�x,y ;�� = T�
ln

e−i�n��l�y�Eln�x� ,

where �l�y�=cos��ly /w� and �l�y�=sin��ly /w�, and the
sum over l starts from l=0 in the first case and from l=1 in
the second; �n=2�nT are the Matsubara frequencies. In ei-
ther case, the wave operator takes the form

�4
2 + �2 → �x

2 − kln
2 ,

with

kln
2 =

�2l2

w2 + �n
2. �26�

The action �18� becomes

SE = −
1

2
KswT�

ln

Cl�
0

L

dx�BlnBl,−n + ElnEl,−n + FlnFl,−n� ,

�27�

where Cl=1 for l=0 and Cl=
1
2 otherwise.

To obtain the b.c. at x=0, L, we need to specify how the
sample connects to the outside world. Here, we consider the
case when the leads are bulk superconductors. As a model of
those, we use strips of the same width w and with same
parameter g as the wire but of much larger stiffness, Ks�
�Ks, and length L��L. L� will eventually be taken to infin-
ity.

Consider the interface at x=L. Denote the Fourier compo-
nents of 	 there as

	ln�L� � 	̄ln.

Then, for any l and n that are not both zero, throughout the
lead �x�L�

	ln�x� = 	̄lne−kln� �x−L�, �28�

where kln� �0 and is given by Eq. �26� with �n
2 replaced by

�n
2 /gKs�. Substituting Eq. �28� into the action of the lead, we

obtain a contribution to the effective action of 	̄ln as follows:

SE� =
1

2
Ks�wT �

kln� �0

Clkln� 	̄ln	̄l,−n.

When we extremize the total action with respect to 	̄ln, this

term gives 	̄l,−n with a coefficient that grows at least as �Ks�

at large Ks�. As a result, at large Ks�, 	̄ln are close to zero. The
same applies at the other interface, at x=0.

We conclude that, in the case of bulk superconducting
leads, both B and E satisfy the Dirichlet b.c. at either end,

Bln�0� = Bln�L� = 0, �29�

Eln�0� = Eln�L� = 0 �30�

�kln�0�. The absence of kln=0 from these conditions is in-
consequential, since neither B nor E has an l=n=0 mode
�only F does�.

Note that the condition �29� is not satisfied by the trial
instanton configurations considered �for the 1D case� in Ref.

τ0 ’τ0

Y(τ)

τ

τCw

∆τ

FIG. 1. The vortex’s transverse position as a function of the
Euclidean time. �� denotes the instanton–anti-instanton separation,
and �C the duration of an instanton. In the text, we also use the

rescaled variable Ỹ =Y /w, where w is the wire’s width.
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28. This explains the difference in the final results: Ref. 28
finds that the phase slip rate remains finite at T→0, while we
find that it is exponential in 1 /T.

We now proceed to solving the wave equations for B and
E, and determining F and the Euclidean action.

IV. SOLUTION FOR THE PLASMON

Since the current components �24� and �25� have the same
x dependence, both B and E can be expressed through solu-
tions to the equation

− �x
2f ln + kln

2 f ln = �x��x − X� �31�

�kln�0� with the Dirichlet b.c. f ln�0�= f ln�L�=0. These solu-
tions are readily found,

f ln�x� =
1

sinh�klnL�� cosh�kln�L − X��sinh�klnx� , x � X

− cosh�klnX�sinh�kln�L − x�� , x � X ,
	

�32�

although, as we will see, many useful conclusions can be
drawn even without using this explicit form.

From now on, we assume that the width w is much
smaller than the length L �i.e., w�L� and restrict attention to
the l=0 �y-independent� modes, which are the only ones that
are potentially infrared sensitive. For tunneling paths such as
the one shown in Fig. 1, this makes our problem similar to
the problem of a quantum phase slip in a genuinely 1D wire.

The field E has no l=0 modes, so it drops out of the
subsequent discussion. The other fields are

B0n�x� = − 2�i���Ỹ�nf0n�x� , �33�

F0n�x� =
2�

�n
���Ỹ�n��xf0n�x� + ��x − X��, n � 0, �34�

where Ỹ is the rescaled transverse coordinate, Ỹ =Y /w, and

���Ỹ�n is the Fourier transform of ��Ỹ,

���Ỹ�n = �
0

�

d���Ỹei�n� = − i�nỸn. �35�

The n=0 component of B is zero, while that of F is the static
uniform component that should be determined from the
properties �the winding number� of the metastable state.

Let us take up the latter task first. In the wire, set F00
=−iI /KswT, where I needs to be determined. Then, in the
leads, F00=−iI /Ks�wT. The total winding number is

N��� = i�
−L�

L+L�
F�x,��dx =

I

w
� L

Ks
+

2L�

Ks�

 + 2��Ỹ��� − TỸ0� .

�36�

The last term here is due to the n�0 modes �34�,

iT �
n�0

e−i�n��
0

L

F0n�x�dx = 2�T�
n�0

e−i�n�Ỹn

= 2��Ỹ��� − TỸ0� .

Note that the sum evaluates not to Ỹ��� but to Ỹ��� without

the zero mode. As a result, N at a given time depends on the

entire history of Ỹ���, in particular, on the value of the IA
separation ��.

The initial and final states of tunneling correspond to
points midway between the instanton and anti-instanton.
These are the points at which the system enters and leaves
the classically forbidden region. If the instanton and anti-
instanton positions are sharply defined, i.e., �C��� �cf. Fig.
1�, the corresponding times are

� f = 1
2 ��0 + �0�� ,

�i = � f − 1/2T .

The winding numbers at these times can be computed from
Eq. �36� and compared to those of ground states with uni-
form supercurrents.

In particular, the winding number at �=�i is the same as in
the uniform ground state with supercurrent Igs given by

Igs

w
� L

Ks
+

2L�

Ks�

 = N��i� . �37�

Thus, the initial state belongs to the thermal ensemble built
near that ground state. A similar relation �with a different
ground-state current� applies in the final state, and we find,
as expected, that the instanton describes tunneling between
two thermal ensembles that differ by a 2� of the winding
number.

The duration of an individual instanton, �C in Fig. 1, is
determined by the parameters of the sample. Meanwhile, as
we will see, the IA separation �� is controlled by the values
of the temperature and current and becomes large when those
are small. So, for calculating Eq. �36�, we can approximate

��Ỹ in Eq. �35� as

��Ỹ � − ��� − �0� + ��� − �0�� . �38�

Then, the last term in Eq. �36� becomes

Ỹ��i� − TỸ0 = T�� ,

where ��=�0�−�0. In the limit L�→�, Eq. �37� gives

Igs = I +
�Ks�wT��

L�
.

This relation between I and Igs can be used to learn how
much action is contained in the l=n=0 mode. The main con-
tribution comes from the leads, where F00=−iI /Ks�wT and
Fgs,00=−iIgs /Ks�wT. So, the l=n=0 term in the action �27�,
relative to the corresponding term in the ground state, equals

S0 =
1

2
Ks�wT� dx�
F00
2 − 
Fgs,00
2� = − 2�I�� + O�1/L�� .

�39�

Note that this is the only term in the action that distinguishes
between direct and reverse processes: it would change sign if
we considered an antivortex tunneling at �=�0 �or a vortex
tunneling in the opposite, positive y, direction�.
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Turning to the n�0 modes, given by Eq. �33� and �34�,
we find that their action is

S1 = 2�2KswT �
n�0

�
0

L

dx��n
2f0n

2 + ��xf0n + ��x − X��2�
Ỹn
2.

Integrating by parts in the derivative term and using Eq. �31�,
we bring this to the form

S1 = 2�2KswT�
n�0
��xf0n�0� + �n

2�
0

X

f0n�x�dx	
Ỹn
2.

Using the explicit form of f0n, we find for the term in the
braces

�xf0n�0� + �n
2�

0

X

f0n�x� =
kn

sinh�knL�
cosh�kn�L − X��

�cosh�knX� ,

where kn�
�n
. This has a minimum at X=L /2 �albeit a
shallow one at small kn�, meaning that the vortex prefers to
tunnel in the middle of the wire. Setting X=L /2, we finally
obtain

S1 = �2KswT�
n�0

kn coth�knL/2�
Ỹn
2. �40�

The approximation �38� correctly reproduces Fourier

components of ��Ỹ with kn�1 /�C. For our purposes, it will
be sufficient to consider only these kn, so we can make the
replacement


Ỹn
2 =
2

�n
2 �1 − cos��n���� �41�

in Eq. �40� and cut off the sum in the ultraviolet at kn
=1 /�C.

The resulting expression for the Euclidean action, SE
=S0+S1, is applicable both to short �LT�1� and to long
�LT�1� wires. In the latter case, it reproduces the result of
Ref. 18, obtained by considering phase slips directly in the
one-dimensional theory. In what follows, we restrict atten-
tion to the former case.

We now need to determine ��. We begin by considering
the action �40� for different values of it. For


��
 � 1/T , �42�

the sum in Eq. �40� can be approximated by an integral as
follows:

S1 � 2�Ksw�
0

1/�C dk

k
�1 − cos�k����coth�kL/2� . �43�

We see that substantial contributions can only come from k
�1 / 
��
. It is therefore convenient to separate the range �42�
into two. For 
��
�L, the cotangent can be replaced with
unity, and we are back to the expression18 for the long-wire
case. The underlying physics is that the typical wave number
of plasmons in the final state is of order 1 / 
��
, and when
this is much larger than 1 /L the effect of the boundaries is
insignificant. In the present case, however, this is possible

only for relatively large currents. Indeed, extremizing the
total action S0+S1 with respect to ��, we obtain the saddle-
point value ��=Ksw / I. For this to be much smaller that L,
we need I�Ksw /L. Although this condition does not look
altogether prohibitive, from now on we concentrate on the
opposite, small-current, regime

I �
Ksw

L
.

Then, there is no saddle point either for 
��
�L or for

��
�L.

As 
��
 increases past L—while still obeying Eq. �42�—
the dependence of Eq. �43� on 
��
 becomes linear, and one
can verify that, for small currents, this again precludes a
saddle point. So, we turn to ���1 /T and the general expres-
sion �40� for S1.

Equation �40� has an extremum at ��=1 /2T �derivative
of each term in the sum vanishes individually�. This extre-
mum is, in fact, a maximum, as it should be: the original
integration was over real �t=−i��, and a saddle point that is
a minimum in the real �t direction is a maximum in real ��.
The contribution from S0 will displace the maximum from
exactly 1 /2T, but for small currents this displacement is
small, and for our purposes ��=1 /2T is a good approxima-
tion. Substituting it into Eq. �41�, we find that only odd n
contribute, and S1 becomes, to logarithmic accuracy,

S1 = 8�2KswT �
n=1,3,. . .

nC 1

kn
coth�knL/2�

�
�2Ksw

2LT
+ 2�Ksw ln

L

�C
, �44�

where nC�1 /�CT. In what follows, we retain only the first,
leading, term on the right-hand side.

The power dissipated by vortex tunneling is given by the
energy 2�I that a vortex releases from the supercurrent,
times the difference between the rates of the direct and re-
verse processes as follows:

P�I� = 2�I�R+�I� − R−�I�� .

To the exponential accuracy, R+�I��exp�−S0�I�−S1�, and
R−�I�=R+�−I�. Expanding in small I, we obtain the resis-
tance

R�T� � e−S1 � exp�−
�2Ksw

2LT

 . �45�

The activated behavior of the resistance can be interpreted
by looking at the gradient of the phase 	 at the entry point of
tunneling, �=�i. Using the approximation �41� and setting
��=1 /2T, we obtain

�x	�x,�i� = iF�x,�i� =
I

Ksw
+ 4 �

n=1,3,. . .

1

n
sin��n/2���xf0n�x�

+ ��x − X�� . �46�

For low-frequency modes, those with 0�kn�1 /L,
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�xf0n�x� + ��x − X� � 1/L ,

so the total contribution of these modes to Eq. �46� is
��x	�low�� /L. Then, the gradient energy contained in these
modes is

E =
1

2
Ksw�

0

L

��x	�low
2 dx �

�2Ksw

2L
, �47�

in precise accord with Eq. �45�. This means that the main
effect suppressing resistance at low temperature is the popu-
lation of the initial tunneling state, due to the large gradient
of 	 already required by that time. There is, of course, an
additional action associated with the tunneling itself, but the
precise agreement between Eqs. �45� and �47� implies that it
is only subleading.

We should note that the entirely classical appearance of
the exponent in Eq. �45� �it does not require any powers of ��
does not contradict it being a consequence of tunneling,
rather than a classical, overbarrier process. Indeed, restoring
� and c0 in the short-wire condition, under which Eq. �45�
applies, we obtain T��c0 /L, and this cannot be realized
outside of quantum mechanics.

For comparison, let us list nucleation energies for two
purely classical processes. The nucleation energy of a vortex
is of order �Ks �times a logarithm�, and that of the
y-independent saddle point, analogous to the LAMH saddle
point in 1D wires,22,23 is of order Ksw /�, where � is the
Ginzburg-Landau coherence length. As long as w and � are
both much smaller than L, either of these energies is larger
than the energy �47�.

Due to a relatively large numerical factor ��2 /2� in Eq.
�47�, the condition ��L, under which the energy �47� is
smaller than the LAMH activation energy, may, in fact, mean
that L must be several times larger than �. Moreover, even if
this condition is satisfied at low temperatures, it breaks down
in a region close to the critical temperature Tc. The short-
wire condition also breaks down near in a region near Tc,
since Ks and hence c0 are small there; in that region, sublead-
ing terms in the instanton action become non-negligible.
Outside of these regions, however, vortex tunneling is the
dominant resistive process.

For a superconductor in the dirty limit, the exponent in
Eq. �45� can be expressed entirely in terms of the supercon-
ducting gap ����T� and the normal-state resistance RN

=�L /w, where � is the sheet resistivity. Indeed, in this case
Ks= ��� /4e2��tanh�� /2T�,29 so

R�T� � exp�−
�2Rq�

4RNT
tanh

�

2T

 , �48�

where Rq=� /2e2=6.5 k�. This suggests that the value RN
=Rq may have a special significance in short wires. Experi-
mentally, it does: this is the value near which one observes a
superconducting-insulating transition.6,13

V. CONCLUSION

We have described a general method for calculating the
effect of plasmons on vortex tunneling in superconducting
wires and applied it to the limit of small temperatures and
currents, when the vortex has to tunnel the entire width of
the wire. The method is based on a duality map, through
which vortices become charges and plasmons become “pho-
tons.” We have found that, if plasmons cannot easily leave
the tunneling region, as is the case when the wire is short and
the leads are bulk superconductors, the suppression of the
resistance in the superconducting state is exponential at low
temperatures and expressed by Eq. �45�.

As the width of the sample is made smaller and ap-
proaches the coherence length �, vortex tunneling crosses
over to quantum phase slips in a genuinely 1D geometry. The
restriction to modes independent of y �the transverse coordi-
nate� that we made in Sec. IV effectively brings us one di-
mension down, so we expect the 1D case to be similar to
ours.

Despite the exponential suppression, the resistance due to
�thermally assisted� vortex tunneling is larger, over a broad
range of parameters, than that due to classical, overbarrier
processes, such as motion of a thermally nucleated vortex-
antivortex pair or a thermally activated phase slip. In addi-
tion, it has a characteristic dependence on the length L of the
sample or, equivalently, on the total normal-state resistance
RN, cf. Eq. �48�. We hope that these features will allow one
to distinguish between the quantum and classical processes
in the experiment.
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